Strenght calculation of 2-bolt fixing system of toroidal tank, made in accordance with Regulation 67 revision 01

According to point 17.4.6. of the Regulation No 67 revision 01: The fuel container(s) must be mounted and fixed so that the following accelerations can be absorbed (without damage
occurring) when the containers are full: Vehicles of categories M1 and N1: (a) 20 g in the direction of travel (b) 8 g horizontally perpendicular to the direction of travel.

According to this documentation the tank is fixed by means of $2 \times \mathrm{M} 12$ bolts to the floor of the vehicle. The calculations were made for the biggest capacity tank $\mathrm{V}=88$ litres and maximum mass of the tank 44 kg . The scope of this calculations is all STAKO toroidal tanks made in all versions T01, T11, T02, T12, T03, T13, T04, T14.

$\mathrm{m}=\mathrm{m} 1+\mathrm{m} 2$
m1- mas of tank =
44 [kg]
m2 - masa of cas
$\mathrm{m} 2=\rho * V * 0.8$
ρ - density of hydrocarbon gas (liquid $\mathrm{C}_{3}-\mathrm{C}_{4}$)
V - capacity of tank

0.8-80\% filling level			$\begin{gathered} \mathrm{m} 2=0,55^{*} 88 * 0,8=38,7 \\ \mathrm{~m}=44+38,7=82,7 \\ \mathrm{Hs}=13,5[\mathrm{~cm}] \\ \mathrm{Mg}=\mathrm{m}^{*} 20^{*} \mathrm{~g}^{*} \mathrm{Hs} \end{gathered}$	[kg] [kg]
Data				
$\mathrm{Mg}[\mathrm{kNcm}]$	l_{1} [cm]	$\mathrm{I}_{\text {max }}$ [cm]		
219,0475	16,51	27,11	$\mathrm{Mg}=\quad 82,7 * 20 * \mathrm{~g}$	13,5

7. 2. 3. Force in one bolt until bending moment
$Q_{M \text { max }}=\frac{M g \cdot l_{\text {max }}}{\sum_{i=1}^{\max } l_{i}^{2}}$

Qmmax $=\frac{219,0475 \cdot 27,11}{16,51^{2}+27,11^{2}}$

Results
$\mathrm{Q}_{\text {Mmax }}[\mathrm{kN}]$
5,89

7. 2. Calculation of bolt connection

Data \quad Bolts M12-8,8-II acc. to PN-74/M.-82101

7. 2. 1. Force in one bolt

Results
Qmmax $[\mathrm{kN}]$
5,89

7. 2. 2. Permissible breaking force.

$$
\boldsymbol{Q}_{d l o p p}=\frac{\pi \pi-\boldsymbol{a l}_{r}^{2} \cdot \mathbb{k}_{\text {dlopp }}}{4}
$$

Dane Data			
dr [cm]	$R m[\mathrm{Mpa}]$	$\mathrm{k}_{\text {dop }}=\mathrm{Rm}[\mathrm{Mpa}]$	Qdop $[\mathrm{kN}]$
0,97	800	800	59,11849

7. 2. 3. Force from initial stress.

$$
\begin{aligned}
& P \cdot r=0,5 \cdot Q_{w}\left[d_{p} \cdot \operatorname{tg}(\gamma+\rho)+d m \cdot \mu\right] \\
& Q w=\frac{P \cdot r}{0,5 \cdot\left[d_{p} \cdot \operatorname{tg}(\gamma+\rho)+d m+\mu\right]}
\end{aligned}
$$

Data								
P [kN]	r [mm]	dp [mm]	$\rho\left[{ }^{0}\right]$	$\gamma\left[{ }^{\circ}\right]$	dm [mm]	μ [-]	P [-]	
0,1	150	1,07	5,710593137	9,288568	12,9	0,1		1,75

Results
Qw $[\mathrm{kN}]$
19,02722

7. 2. 4. Maximum axial force in a bolt.

Qc=Qmmax+Qw+m*g/4 Qc= 5,89+19,02722+0,202822

Wyniki Result	Qc $[\mathrm{kN}]$
	$25,12004<\mathrm{Q}_{\text {dop }}=40,21 \mathrm{kN}$

7. 2. 5. Maximum stresses in a bolt.
$\sigma=\frac{4 \cdot Q_{c}}{\pi \cdot d^{2}} \leq k_{d o p}$

Results
$\sigma[\mathrm{Mpa}]$
$339,928<\mathrm{k}_{\text {dop }}=800 \mathrm{MPa}$

Opracował:
J. Czechowski
19.01.2005

